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2 INTRODUCTION3

1 INTRODUCTION

In recent years considerable interesl has been generated around the topic of model-
based reasoning, particularly its application to diagnosis and troubleshooting. This
paper surveys the current state of the art, reviewing areas that are well understood
and exploring areas that present challenging research topics. It begins by describing
the nature of the task, exploring what is given and what we're trying to produce.
Since, as will become clear, there are considerable advantages to reasoning from a
model of structure and behavior, we need representations for both; we review the set
of techniques in current use and examine their strengths and weaknesses.

A considerable part of the paper is then devoted to how those representations are
used to do model-based diagnosis. We view the fundamental paradigm as the interac-
tion of prediction and observation, and explore it by examining its three fundamental
subproblems: Generating hypotheses by reasoning from a symptom to a collection
of components whose misbehavior may plausibly have caused that symptom; testing
each hypothesis to see whether it can account for all available observations of device
behavior; then discriminating among those that survive testing. In any real system
these three are likely to be intertwined for reasons of efficiency. We treat them in-a ' dependently to simplify the presentation and because our goal is a knowledge-level
analysis - an understanding of what reasoning capabilities arise from the varieties
of knowledge available to the program.

The presentation is structured as a sequence of increasingly elaborate examples,
starting with the simplest approach and adding successively more knowledge, pro-
ducing successively more constraints that can be brought to bear. This is useful both
as a way of simplifying the presentation and as a way of making another of the major
points of this paper: While a wide range of apparently diverse model-based systems
have been built for diagnosis and troubleshooting, they can all be seen as exploring
variations on the basic paradigm outlined here. Their diversity lies primarily in the
varying amounts of and kinds of knowledge they bring to bear at each stage of the
process.

Our survey of this familiar territory leads to a second major conclusion of the
paper: Diagnostic reasoning from a tractable model is largely well understood. That
is, given a model of structure and behavior of tolerable complexity, we know how to
use it in a variety of ways to produce a diagnosis. Part of the evidence for this is the
number of different applications of that same paradigm in a variety of domains.

There is, by contrast, a rich supply of open research issues in the modeling process
itself. While to some degree know how do model-based reasoning, we don't know how
to model complex behavior, how to create models, and how to select the "right" one
for tlie task at hand. The last major section ofl I le paper deals with these topics,
exploring the kind of difliculties tha arise awd using thei to outline some importalt,
research problems.
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2 THE BASIC TASK
The basic paradigm of model-based reasoning for diagnosis can best be understood
as the interaction of observation and prediction (Figure 1). In one hand we have the
actual device, typically some physical artifact whose behavior we can observe. In
the other hand we have a model of that device that can make predictions about its
intended behavior. Observation indicates what the device is actually doing, prediction
indicates what it's supposed to do. The interesting event is any difference between
these two, a difference termed a discrepancy.

ACTUAL _ OBSERVED PREDICTED 4 MODEL
DEVICE observations BEHAVIOR BEHAVIOR predictions

DISCREPANCY

Figure 1: Diagnosis as the Interaction of Observation and Prediction.

A fundamental presumption behind model-based diagnosis is the notion that if
the model is correct, all the discrepancies between observation and prediction arise
from (and can be traced back to) defects in the device. Simply put, if the model is
right, the device must be broken, and the discrepancies are clues to the character and
location of the faults. This is a useful view of the process that will carry us through
the first two thirds of the paper.

We will eventually see, however, that it is also a simplified view: The assumption
that the model is correct is in fact, necessarily wrong in all cases. It is wrong in ways
that are sometimes quite obvious and sometimes quite subtle. Simply put, a model is
a model precisely because it is not the device itself and hence must in many ways be
only an approximation. There will always be things about the device that the model
does not capture.

The good news is that the things the model fails to capture may have no pragmatic
consequence. A schematic for a digital circuit, will not indicate the color, smell,
or coefficient of friction of the plastic used to package the chips, but this typically
doesn't matter. In theory the model is always incomplete, and hence incorrect, in
some respects, but it is a demonstration of the power an(l utility of engineering
approximations that models are often pragmatically good enough.

'[ie less good news conies in siluations where the approximation is not good
enough. In that case we need to ask tle morc difficult qwstion of how to do model-
based reasoning in the face of an imn,,rrect modhl. \Vhat (an be done when both the
model and the artifact may have defc'ts? \Ve t uni to this later in the paper.
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Turning back to the basic problem, the task can be specified slightly more precisely
by saying that we are given:

* observations of the device, typically measurements at its inputs and outputs

(because these are often easiest to obtain; in fact measurements at any point
will do and are handled identically),

* a description of the device's internal structure, typically a listing of its compo-

nents and their interconnection, and

e a description of the behavior of each component.

The task is then to determine which of the components could have failed in a

way that accounts for all of the discrepancies observed. Figure 2, for example, shows
a device made from three multipliers and two adders. \Ve know the values at the
five inputs; the value at output F was predicted to be 12 and observed to be 10
(observations are noted in square brackets). The value at G is predicted to be 12 and

has not yet been measured. The overall task is to use knowledge about the structure

__ €  and behavior of the components to determine which ones could have produced the
discrepancy at F, a process explored in detail in Section 6.

A=3 ML-

F=12
B=3 ADD-1 [F=101

C=2 - MULT-2

D=2 D _ADD-2 G1G=12

I/

E=3 MULT-3
E=3

Figure 2: A Common Example.
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This approach to troubleshooting has been called by a variety of names in addition
to model-based, including "reasoning from first principles" because it is based on
a few basic principles about causality, and "deep reasoning," an unfortunate term
intended to distinguish it from the associational rules typically used in rule-based
expert systems.

Numerous model-based reasoners have been built, exploring a variety of problem
domains. The illustrative sample given in Table 1 indicates the growth of interest
in the area. Some of the earliest work dates from the mid-1970s, with a consider-
able growth of interest in the inid-1980s. Much of it has been directed to electronic
circuits, both analog and digital, but there have also been applications to problems
in neurophysiology, hydraulic system-, and other domains. In the remainder of this
paper we use digital circuits as a motivating example, largely because they are a fa-
miliar and important application that offers a range of examples from simple to quite
complex.

Table 1: Sample Model-Based Troubleshooting Systems.

INTER [deKleer76]
WATSON [Brown76]
ABEL [Patil81] 
SOPHIE [Brown82]
HT [Davis82]
LOCALIZE [First82]
[I)S [lan84]
1) A II [ Cenuesreth84]
LS/LOX [ScarI85
GDE [deKleer87]
DEDALE [Dague87]

The term "model" has been used widely to refer to a range of different, things

and is somewhat underdetermined. It is thus useful to review briefly some of the
different kinds of models that have Ibeen IISed, to get. a Sense of the character of th'
information that models have supplied. As noted, the mfodels used in this paper
contain information about the structure and correct behavior of the components in
the device. Work in (Patil8 ] describes a, medical diagnosis sy tein that. used models

of behavior without structure, models that indicated how one p~hysiological event in
the body could lead to a.nother (e.g.. low blood srum plI ca;mes increased respira-
tion, which causes decr(asel C()2 (,lcentration). Traditional circuit. diagnosis has

often relied on fault. models, descript lons of the w, rieties of component misbehaviors
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typically encountered. Finally. work in [Pan84] has attacked the problom of depen-
dent failures by building models that capture the behavior of a componient when it
receives out-of-range inputs and itself begins to inalfunction as a result. All of these
are varieties of models, so a system built around any one of them could be termed
model-based. Within the scope of this paper we are concerned primarily with models
of structure and correct behavior.

3 ALTERNATIVE APPROACHES
Since a number of different approaches to diagnosis have been explored over the
years, it is useful to consider alternatives to the lnodel-based approach both as a way
of setting it in context and as a way of establishing the appropriate circumstances for
its use.

One traditional approach has been to use diagnostics, the test programs tradition-
ally used on electronic devices at the end of the manufacturing line, to ensure that
the device is capable of doing everything it's supposed to do. A second technique
is to build a "fault dictionary" by using simulation and a list of the kind of faults
anticipated. The idea here is to simulate the device behavior for every one of the ways
in which each individual component can misbehave. Each simulation generates a de-
scription of how the entire device would behave if a specific component were broken
in a specific way. The overall result is a list of fault/symptom pairs. The list is then
inverted so that it is organized by symptom, providing a dictionary that indexes from
observed symptom - the surface misbehavior - to one or more underlying faults
capable of causing that misbehavior.

Third, we can build programs to do diagnosis by capturing the experience of ex-
perts, in the fashion widely used to build rule-based systems that employ empirical
associations. Finally, decision trees are a longstanding approach to capturing diagnos-
tic knowledge and offer a way of organizing a set of questions that leads methodically
thro gh the process of zeroing in on the faulty component.

Given the diversity of approaches to the problem, why and when does it make sense
to use the model-based approach? One way to answer the question is to compare it
against the alternatives.

3.1 COMPARED TO DIAGNOSTICS
One problem with traditional diagnostics is that, they are misnamed: Diagnostics
don't do diagnosis, they do verification. As noted, their job is to ensure that a
newly manufactured device will in fact do everything it's supi)osed to do. There
is no misbehavior to diagnose, because there hasn't been any behavior yet. The
findamental task of verification is to exercise all the intended behaviors and make
sure that they a re all there. That's a differeit pnbleul).
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Model-based diagnosis, on the other hand, is both diagnostic and symptom--
directed: It starts with the observed misbehavior and works back toward the underly-
ing components that might be broken. As will become clear, whenever the behavior
of a device is reasonably complicated, it's much easier to work from a specific symp-
tom back to an underlying fault than to go exhaustively through all the expected
behaviors until we find one that's aberrant.

3.2 FAULT DICTIONARIES AND DIAGNOSTICS: PRESPECIFIED
FAULT MODELS

As we explore in more detail later, the model-based approach also covers a wider
class of faults than both fault dictionaries and traditional diagnostics, because both
of those require a fixed, preselected class of relatively simple fault models. For fault
dictionaries the task is to select a set broad enough to be useful in practice, yet.
simple enough that the simulation task is tractable. Writers of diagnostics typically
have to settle on a small, fixed class of faults in order to create diagnostics that
have acceptable coverage (the percent of possible faults actually detected), resolution
(how precisely a detected fault can be localized), and efficiency. In the world of digital
electronics the most common choices are the faults known as stuck-at-I (a node in the
circuit always exhibits the value 1) and stuck-at-0, largely because these are easily
modeled, simulated, analyzed, and turn out to provide good coverage of other types
of faults.

Whatever the faults chosen, the important point is that the fault dictionary creator
or diagnostic writer must pre-select a set, of things that can go wrong and work from
just those possibilities. As will becoime clear, the model-based approach takes a
different view, defining a fault as "anything other than the intended behavior;" one
consequence of this view is the ability to cover a wider class of possible misbehaviors.

Fault models do offer two useful abilities. First, as we explore in Section 6.3.1,
they can provide an extra degree of specificity to the diagnosis. Where the model-
based approach defines a fault by exclusion (anything other than expected behavior).
fault models suggest specific misbehaviors that can aid in making the predictions
necessary to design further tests.

Second, even though the set of pre-enutiieraled faults used may be small, it may
be adequate for the task at hand. In digital circuits, for example, a large fraction of
all faults can be detected (but not diagnosed) by checking just for stuck-ats. Hence
two simple fault models turn out to be stiflicient for determining that something is
wrong (satisfying the verificat ion task): determining the identity and location of the
error (diagnosis), however, is more ,lilliult.
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3.3 COMPARED TO RULE-BASED SYSTEMS

Traditional rul-based systems have been built by accumulating the experience of ex-
pert troubleshooters in the form of empirical associations, rules that associate symp-
toms with underlying faults and that base those associations on experience with the
device, rather than knowledge of structure or behavior. The problem here is the
strong device dependence -- a new rule set is required for every new device - and
the time required to accumulate those rules. To the extent that the knowledge is an
encapsulation of experience, a sizable body of experience may be necessary before the
patterns emerge.

The issue becomes especially important in dealing with electronic devices, where
the design cycle is getting short enough to be comparable to the time required to
accumulate a new set of rules. This presents the difficult situation in which the
device may be on its way to obsolescence by the time enough experience with it has
accumulated to deal with the difficult faults.

The model-based approach is, by contrast, strongly device independent, works
frtom an information source (the design) typically available when the device is first
manufactured, and is far more likely to provide methodical coverage. Given a design
description for a device, work can begin on diagnosing the device right away. Given

U' a new design description for a different device, work can start on that one just as
quickly.

The model-based approach can be less costly to use, because the model needed
is often supplied by the description used to design and build the device in the first
place. The increasing use of computer aided design and manufacturing also means
that those models are increasingly available as explicit descriptions in electronic form,
rather than implicit in the head of the designer, or sketched informally on a scattered
collection of paper.

The model-based approach is more likely to provide methodical coverage because
the model building process supplies a way of systeniatically enumerating the required
knowledge. Systems built from eipirical associations capture whatever experience
has been encountered to (late and offer far less guidance about what may be missing.
As a result it is also more difficult to deteriniie I he coverage of such a system.

Finally, it may be claimed that rules need iiot lbe just empirical associations,
they can also he written to take advantage of knowledge about device structure and
behavior. But that's just the point: The relevant knowledge concerns structure and
behavior. Given that, we ought next to ask what representations are well suited to
capturing that information, what representations offer us leverage in thinking about
that knowledge. Rules, whether as enpirical associations or viewed simply as if/then
st.atcments, offer uis little or no help in thinlkinig about. or represen iing struct ire and
behavior, or in u1sing sulch description|s It l() (liagui0sis. lost fuida.nientally, the'y do
not even lead us to think iM such terms.
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In slightly more general terms, the primary question is not whether some existing

representation can in some fashion be made to do the task. The primary question is,
what is the relevant knowledge, and second, what does that content suggest about

appropriate form. We consider such representations in Section 5.

3.4 COMPARED TO DECISION TREES

Decision trees provide a simple and efficient way to write down the sequence of tests

and conclusions needed to guide a diagnosis. But the same simplicity and efficiency
that is their strength is also an important weakness: They are a way of writing down
the "answer" (a diagnostic strategy), but offer no indication of the knowledge used to
create that answer. One consequence is a lack of transparency (the tree provides no
indication why the diagnosis is what it is) and difficulty in updating (a small change
to the device may mean a major restructuring of the tree). Like rule-based systems
they are also device specific and must be recreated anew for each new device.

3.5 WHEN NOT TO USE THE MODEL-BASED APPROACH

Comparing the model-based approach to its alternatives provides some indication of
its strengths and indications for its use. When does it make sense not to use this
approach? The answer can be bracketed by examining problems that are too hard

and problems that are too easy to be worth trying this way.
Problems that are too difficult are those involving subtle and complicated inter-

actions in the device, interactions whose outcome is too hard to predict with current

modeling technology. Consider, for example, a model of a computer that has been
found through experience to have unreliable power supplies. The lack of reliability

may arise from a sizable collection of interacting factors, like the heating and insula-
tion patterns, air flow, electric and thermal properties of the materials used to build

the power supplies, etc. Predicting such behavior from the design description would
very likely be )ragmatically inipossible, yet summarizing and using it once it has been
noticed is quite easy ("if one of these inachines is behaving erratically, it's likely to be
the power supply"). We are in effect recognizing here that in some cases it's far easier
to "let nature do the experiment," watch t he outcome, and capture the experience in

the form of rules, than it would I)e to 1)re(lict the result from first principles.

Future advances in modeling and prediction will extend th(,e limits, but the point

remains that, given sufficient comple,:ity. it is easier to let nature do the experiment.

Reality is sometimes the cheapest sMitilator.

Problems that are too easy are those in which the device is so simple that we

can model its behavior exhaustively >md where the set of faults to be (onsidered is
well enough known and well enough un(erstood .o be reliably )re-enulmerated. In

that case it may make sense simply t, do (exhaustive enumeration and create a fault
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dictionary.
We can thus approach the issue of when to use the model-based approach from two

dimensions. First, the structure and behavior of the device should be reasonably well
known and simple enough to model, but complex enough that exhaustive simulation
is infeasible. Second, the set of possible faults should be difficult to reliably enumerate
in advance.

4 ORGANIZATION AND VOCABULARY
The discussion in this paper uses several basic ideas as organizing principles. First,
we view diagnosis in terms of the three stages of hypothesis generation, test and
discrimination. Second, we note that different amounts of knowledge can be brought
to bear at each of these stages, producing more or less powerful approaches. Third, the
range of programs that can be created by considering different amounts of knowledge
at each stage maps out a space of possible program architectures. Finally, and perhaps
most interestingly, we claim that this space of architectures captures the current set
of programs that have been explored. That is, we can describe all the current model-
based systems by characterizing them according to the amount and kind of knowledge
they use at each of these three stages.

A number of basic vocabulary terms will facilitate later discussion. By "device"
or "system," we mean the entire artifact. e.g., the entire device in Figure 2. By
"component" we mean any one piece of it, in this case any of the adders or multipliers.
(We may choose to represent wires as components as well; this is an issue of modeling
choice discussed later.) By "structure" we mean the way things are interconnected,
while "behavior" refers to what any one of these components is supposed to do. We
use "discrepancy" to mean any of the differences between the behavior the device
is supposed to exhibit (e.g., F=12, predicted by the model) and what it is actually
doing ([F=1O], determined by observation). By "suspect" we mean any component
identified in hypothesis generation as able to account for a discrepancy (e.g., MULT-1
can account for the discrepancy at F). Finally, by "candidate" we mean a component
whose malfunction is consistent with all observations (i.e., a suspect that has survived
hypothesis testing). When dealing with multiple faults, a candidate may consist of
more than one component.

5 DESCRIBING STRUCTURE AND BEHAVIOR
While a number of apparently different approaches to representing structure have
been explored, there are several common themes that appear to be widely viewed as
good ideas.

9 Structure representation should be hierarchical.
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Inside any of the boxes in Figure 2, for instance, there are more boxes and wires;
look inside those and there are more of the same, until we arrive finally at primi-
tive components. A hierarchical description permits hierarchical diagnosis: Work at
the highest level initially until specific candidates have been isolated, then explore
inside only those components, since there is no need to examine the substructure of
components that are not candidates.

* Structure representation should be object centered and isomorphic to the orga-
nization of the device.

By "object centered" we mean that there are data objects corresponding to each
of the components in the device; attached to each object is a description of its be-
havior. The representation should be isomorphic in the sense that the topology of
interconnections between the objects should match the interconnections in the device.
Hence the object associated with MULT-2, for instance, is connected in the LISP sense
to the objects for ADD-1 and ADD-2.

One useful consequence of doing this is that it provides a single, unified repre-
scntation that is both runnable and examinable. It is runnable in the sense that it
can be used directly for simulation: If we supply values for the inputs to MULT-1, for
instance, the object corresponding to it will discover that it has enough information
to predict its output. It will do so, placing the result at its output, where the infor-
maton will travel via the connections to the next component in line, which may now
continue the process.

The same representation is examinable in the sense that it can be inspected to
answer questions about device structure. Because it is in part a graph, questions
about connectivity can be answered simply by traversing the representation.

* Behavior can be represented by a set of expressions that capture the interrela-
tionships among the values on the terminals of the device.

The behavior of an adder, for example, can be captured with three expressions
(Figure 3), indicating that:

" If we know the values at A and 1. the va.lue at C' is A+B (the solid arrow in
Figure 3).

" If we know the values at (_'and A, th, \alue at. B is C A (tile dashed arrow).

" If we know the values at (C'aiId B3, 1 le vahue at A is C- 13 (the dotted arrow).
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.ElC-B

'V IE

C-A 7

Figure 3: The Behavior Description of an Adder.

While the expressions here are written in algebraic form, the important thing is
the knowledge content, not form. Work in [Genesereth84], for example, has explored
the use of predicate calculus as a representation for both behavior and structure.

Interestingly these expressions capture both the causal behavior of the device
(the bold arrow), as well as other things we can infer about the device (the other two
arrows). The first of these indicates how it works, the other two are useful inferences
we can make about what must have been at an input, given observations at other
terminals. As we'll see, both kinds of information play an important role in supporting
diagnosis.

6 THREE FUNDAMENTAL TASKS
We consider next the three fundamental tasks of diagnosis and examine how each
has been attacked in the model-based approach, using a variety of different kinds
and amounts of knowledge. We consider each in turn, starting with the common
simplifying assumption that there is only a single point of failure; as the discussion
proceeds we show how some of the techniques can be extended to cover multiple
points of failure.

9 Hypothesis generation: Given one discrepancy, which of the components in the
device might have produced it?

* Hypothesis testing: Given a collection of components implicated during hypoth-
esis generation, which of them could have failed so as to account for all available
observations of behavior?

* llypotlieIis (isc 'imiiiatlioll: Wheli. as is aliiost i('vitabh', more thai oel( hy-
pothlesis survives tl tcsting plase, what addit jonal iii'ormation should be galh-
ered to discriminate among them?
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As noted, for the sake of presentation each of these is discussed independently,
even though in most implementations they are interleaved for the sake of efficiency.
While interleaving offers useful improvements in speed, it produces no fundamental
changes to the paradigm.

6.1 HYPOTHESIS GENERATION
The fundamental task here is, given a discrepancy, determine which components might
have misbehaved in a way that can produce that discrepancy. Classical Al wisdom
tells us that a good generator should be cornpletf (i.e., capable of producing all the
plausible hypotheses); non-redundant (i.e.. capable of generating each hypothesis only
once); and informed (i.e., able to produce few hypotheses that ultimately prove to be
incorrect).

In the spirit of proceeding incrementally we consider a sequence of generators
from the simplest and least informed, through successively smarter versions that
bring additional kinds of knowledge lo bear.

The simplest generator, guaranteed to be complete, is one that, simply exhaustively
enumerates the components in the device. For the device in Figure 2, for instance, the
generator simply produces each of the five components one by one. This is trivially
complete and not particularly intelligent.

We can improve on this with a succession of observations. For example:

0 To be a suspect, a component must have been connected to a discrepancy.

That is, to plausibly explain a discrepancy, the suspect must have in some fashion
been involved in it, have contributed to it. Our second generator takes advantage of
the insight by traversing the structure description, working from a discrepancy (e.g.,
at F in Figure 2) to find all components connected to it. In the current case this
provides no improvement, since the connections (wires) leading from F reach every
component.

We next observe that:

* Devices often have distinguishable inputs and outputs.

This is clearly true for our adders and multipliers (Figure 4) and can be used to
constrain the components considered: We iieed only consider components that are
upstream of the discrepancy. In the curreijt example this reduces the set of suspects
to ADD-i, MULT-1, and MUIT-2.

We can be a bit smarter yet, bY observing that:

* Not every input to a device iilitences the output; there is no need to follow
irrelevant inputs uipstream.
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A=3 MULT-1

--F=12
B=3 ADD-1

GF=101
C=2 -" MULT-2

D=2 
ADD-2G

MULT-3
E=3

ReQ Figure 4: Taking Advantage of Direction of Information Flow.

The easiest example of this is an 011 gate whose inputs are produced by two
independent collections of components further upstream (Figure 5). Given inputs of
1 and 0, the model for the gate makes the obvious prediction at C. If the actual device
is observed to be producing 0 there, three possibilities arise. First, the OR gate itself
may be broken. Second, the gate may be working but input A is 0 rather than 1 and
the problem lies further upstream in that direction, so we should continue tracing
that way.

The third possibility, however is problematic: It is contradictory to believe that
the OR gate is working but that the problem lies further upstream of B. No matter
what's going on upstream of B, if the OR gate is working, that is not going to
account for the observed behavior. As a result, we need not consider any components
upstream of this point. More generally, the hypothesis generator can use knowledge
about component behavior to determine which inputs are irrelevant and avoid tracing
back through those.

Finally, we can observe that

e Information from more than one discrepancy can be used to further constrain
suspect generation.

Wleni there is more tha, one dkicrpaicy, we cant generale a set, of suspects for
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A= C=1

Figure 5: Not Every Input Influences the Output.

each, then (assuming a single point of failure) intersect them, possibly reducing the
number of suspects generated. Consider Figure 6. as an example. Tracing back from
the discrepancy at F yields ADD-I, MULT-1, and MULT-2 as candidates; tracing from
G yields ADD-2, MULT-1 and MULT-2. Assuming a single point of failure, the suspects
lie in the intersection of these two sets.

A=3 MULT-1

F=12
B=3 -ADD-I [F10

C=2 I M LT-2

= MG=12

D=2 ADD-2

MULT-31
E=3

Figure 6: Polybox with Discrepancy at F and G.

This scheme is easily elaborated to deal with multiple points of failure by rec-
ognizing that the generalization of intersection in this case is set covering: We are
trying to find a subset of components that accounts for (covers) all the discrepancies.
To deal with the situation in Figure 6, for inistance. we might select MULT-1 from the
first discrepancy and ADD-2 from the secoiid, yielding a hypothesized pair of faults
that covers all the discrepancies.
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6.1.1 Machinery
One brief diversion into mechanism will make clear how to do this kind of reasoning
easily and efficiently. The basic insight is to have the simulator record "reasons" as
well as values. When the simulator predicts I at C, for instance, it records both that
value and the expression from the behavior model for the component that produced
the value (Figure 7). In this case the simulator would indicate that tde value at C is
1 and the reason is El.

A=1 -. \

BC value: 1
reason: El

El: If A=1 then 0=1
E2: If B=1 then C=1
E3: If A=0 and B=0 then 0=0

U * Figure 7: Recording Reasons as Well as Values.

This simple mechanism offers an easy way to determine which inputs to a compo-
nent were relevant to its output, fturther constraining the search for hypotheses. All
we need do is inspect the simulation record to determine what expression was used
to predict a value, then inspect that expression to determine which inputs it used.'
In Figure 7 for example, expression El uses only A, hence we need never consider
hypotheses upstream of B.

This is a somewhat simplified but, essentially correct view of the machinery in most
model-based simulators in use today. The general notion is to have the simulator keep
track of dependency records that inidicale what information was used to determine
each new value; generating candidates cai thlien be done simply by tracing back
through the dependencies.

A slightly more elaborate example will demonstrate why this technique can be
very useful. Figure 8 shows a collection of gates with arrows indicating the records
the simulator has kept as it made its predictions. Given a discrepancy at tile output,
the task of generating a complete, non-redundaut and constrained set of hypotheses
becomes simply a process of following the trail of electronic bread crumbs back along

'Alternatively we cotild simply record which iiipls w'er, used. 'l'hi, schcrne given is slightly nore
genral, since the reasons can the useful in other ways, e.g.. as a hasis for explanation. Fnd the inputs
caii h)C determined from th,. ,
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the reasons. Part of the overall insight here is that by using a reasonably sophisticated
simulator - one that propagates reasons as well as values -- the hypothesis generation
task becomes relatively simple and straightforward (SOPHIE [Brown82] provided one
of the-earliest examples of this approach).

0 0

Figure 8: Dependency Traces Left by the Simulator.

0

0 
11[01

Figure 9: Candidates Selected by Tracing Back through the Dependency Traces.

6.2 HYPOTHESIS TESTING: A SIMPLE TECHNIQUE
In the second basic task of diagnosis --- hypothesis testing -- the goal is to test each
suspect to see if it can account for all the observations made about the device. One
simple approach is to use fault-model simulation on the suspects produced by the
generator (as for example in [Brown82] and [Pan84]). We enumerate all the ways
each specified component can malfunction, then simulate the behavior of the entire
device on the original set of inputs under the assumption that the candidate is mal-
functioning in the way specified. If the overall predicted behavior is inconsistent with
the observations, the hypothesis can be discarded: hypotheses accounting correctly
for the observations pass the test and arc retained. The result is a set of hypotheses
specifying how each suspect may be nmalfunictioning.

One interesting additional inference cani be made if we believe that the pre-
enumerated list of misbehaviors is compilctc: If none of the misl)ehaviors hypothesized _
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for a component matches the observations, that component must be working correctly
in the current situation and can be exonerated. It may or may not be working per-
fectly in all circumstances, but it is not causing the current set of discrepancies and
we will have to look for the fault elsewhere.

If the misbehavior list is not believed complete, the component cannot be exoner-
ated, since it may be misbehaving in some as yet unknown fashion. In this situation
we may end up with two categories of suspects: those for which a hypothesized mis-
behavior matches the observations and those that may be failing in an unknown way.
In that case it may make sense to treat the first category as more likely, falling back
on the second only as necessary.

6.3 HYPOTHESIS TESTING: MORE ADVANCED TECHNIQUES

Three other slightly more advanced techniques use knowledge about device behavior
to generate and test hypothesized candidates, yet do not require a pre-enumerated
set of misbehaviors.

6.3.1 Constraint Suspension
Constraint suspension [Davis84] tests whether a suspect is consistent with all the
observed behaviors of the device. The basic idea is to model the behavior of each
component as a set of constraints, and test suspects by determining whether it's
consistent to believe that only the suspect is malfunctioning. That is, given the
known inputs and observed outputs, is it consistent to believe that all components
other than the suspect are working correctly?

Consider the standard circuit as an example, in a situation in which the inputs are
as shown in Figure 10 and where values at both outputs have been measured, yielding
a discrepancy at F and the predicted value at G. The behavior of each component is
modeled as a set of constraints of the sort shown previously in Figure 3; Figure 10
shows the entire device with the constraint, network sketched in.

This network and set of values is clearly inconsistent. That is, given this set of
constraints, if the values shown were inserted at the inputs and outputs, some con-
straint would soon encounter an inconsistency, i.e., attempt to fire and record a value
at a node where there was already a different value recorded. Since constraints can
propagate either from inputs to outputs or from outputs to inputs, the inconsistency
might occur anywhere in the network (at the outputs, the inputs, or an interior node).
The important, point is that the network would report an inconsistency somewhere.

The traditional approach to handling inconsistencies in constraint networks is to
find a value to retract. Here, however, we are sure of the values (the inputs seut
in and the outputs measured); we are, however, iinsure of the component behaviors.

Constraint suspension thus takes the dual view: Rather than looking for a value to
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A=3

B=3 [F=101

C=2

D=2 [G=12]

E=3

Figure 10: The Constraint Network View of the Device.

retract, it considers which constraint to retract to remove the inconsistency.
To put this back in hypothesis testing terms, recall the basic question stated above:

Given the available observations, is it consistent to believe that all components other
than the suspect are working correctly? "Working correctly" means the component
is behaving as the model predicts; this is simulated by having the corresponding
constraint "turned on." To say something is a suspect, by contrast, is to indicate
that we don't know what it's doing, what its behavior is. In that case the most
conservative stance is to retract all assumptions about its behavior. This is simulated
by suspending its constraint, i.e., removing it from the network temporarily. Figure 11
shows the situation when testing the hypothesis that MULT-1 may be at fault.

Hypothesis testing is thus accomplished by suspending the constraint for the sus-
pect, leaving in place the constraints for everything else, then putting in the observed
values and allowing the (reduced) constraint. network to run to quiescence. If it does
so without encountering an inconsistency, we get t wo interest ing pieces of information.
First, we know that the current suspect is in fact consistent with all the observations,
i.e.. there is some behavior for it that can account for all the observations. Second,
the constraints often propagate values to the terminals of the suspect, supplying in-
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A=3

B=3 - [F=10]

0=2

D=2 -[G=121

E=3

Figure 11: The Network with the Constraint for MULT-1 Suspended.

formation about how it must be misbehaving. For example, the constraint network in
Figure 11 will eventually determine that MULT-1 is a consistent candidate that could
be multiplying 2 and 3 to produce 4. This ability to infer component symptoms is
clearly dependent on the ability to propagate "backwards," in this case inferring the
upper input of ADD-1 from its output and lower input.

If the network is still inconsistent even with the suspect's constraint suspended,
the current hypothesis can be rejected, exonerating the suspect: There is no set of
assignments to the terminals of the suspect consistent with the observed values and
the constraints currently in effect. This occurs when testing MULT-2, one of the three
suspects produced by hypothesis generation for the situation in Figure 10. With only
the constraint for MULT-2 suspended, there is no set of assignments to its terminals
that is consistent with the inputs and outputs observed. It can thus be rejected.

There are several interesting properties of this technique. First, as noted, it not
only indicates whether or not something is a. consistent candidate, it can often specify
the symptoms at the terminals of that component.

Second, the power of hypothesis testing and its ability to infer symptoms are
dependent on the power of the propagation machinery. Current constraint systems
a;I "local" i IIIc sCIIs( tha they propaga.e valu.s t irmigh oiEi component at a lime,
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at each step solving one equation in one unknown. This style of propagation can stall
when it encounters situations requiring more sophisticated algebra (e.g., solving two
equations in two unknowns). Such situations are relatively common in domains with
non-directional components and can arise in domains with directional components in
structures that have reconvergent fanout (i.e., a signal that branches and then rejoins
at the inputs to a component).

The complexity of the algebra required depends on both the vocabulary used in
the behavior language and the interconnection topology of the devices; it can quickly
grow quite difficult. Some research has attacked the problem by propagating symbolic
expressions rather than numbers (e.g., [SussmanSO), exhaustive enumeration has also
been explored where ranges are finite. If propagation does stall, the system will judge
the candidate consistent because no contradiction was derived, even though there may
in fact be one. Other work, relying on direct symbolic manipulation of expressions
(e.g., [Genesereth84], [Scarl85]) encounters similar problems where their symbolic
solution methods are not complete.

Some candidates accepted as a result of stalled propagation are valid; in those
cases there is no adverse consequence. Even when an invalid candidate is accepted,
however, the only consequence is that the candidate set is larger than it should have
been. The diagnosis is thus somewhat less precise, but at least no valid candidate is
overlooked.

Third, where many traditional techniques require specifying how a component
can fail, the reasoning above simply withdraws any commitment to how it might be
behaving. That is an interesting property of model-based reasoning in general, not
just the constraint suspension approach: Something is malfunctioning if it's not doing
what it's supposed to, no matter what else it may be doing. As a result there is no
need to pre-specify how the component might fail, a fault is any behavior that doesn't
match expectations.

It is in that sense that the model-based approach, using a model of correct be-
havior, covers a broader class of faults than traditional techniques that require pre-
specified fault models. Note for instance, that the device in Figure 11 may be misbe-
having because the wrong kind of chip was inserted into the socket where the multi-
plier vas supposed to go. In that case there is no simple model for the misbehavior
and no plausible way to diagnose it in the traditional fashion. Yet the model-based
approach handles this case because it need only observe that the component isn't.
doing what it's supposed to do.

The fault model approach falls short in Ibis case because its models combine
both physical and logical plausibility. The model-based approach by contrast deals
only with logical plausibility, asking simply whetlher there is any set of values the
component might display that can account for all the observations. The technique.
by design. does not ask whether that set of values is in fact physically plausible.
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As a result it can suggest candidates that, while logically plausible, are in fact
physically unrealizable, requiring a second pass to filter them out. This can, however,
be an advantage because physical plausibility is technology-specific. A broken wire,
for instance, can manifest differently depending on the technology; in TTL logic, for
instance, it will appear as a high. Embodying this knowledge separately can both
ease the initial construction task and reduce the difficulty of applying model-based
reasoning to a new domain.

The traditional use of fault models can also be seen as trading off breadth for
specificity: By committing to a pre-specified set of set of possible failures, we can gain
in return greater specificity in the diagnosis. In the case of MULT-1, for instance, the
model (of correct behavior) approach can say only that the component is multiplying
2 and 3 to get 4, while the fault model approach might indicate as one possibility
that the 2-bit of the output is stuck at 0 (turning 6 into 4).

The model-based approach tl-us supplies a behavioral description of the misbehav-
ior for this specific case, and, by design, says nothing about what the malfunctioning
component would do with any other inputs. This permits it to cover a broad variety
of possible failures. The fault model approach, on the other hand, pre-commits to
a specific set of malfunction mechanisms and as a result can be more specific about
what is wrong and can provide the basis for predictions of misbehavior for other
inputs (e.g.. if the 2-bit is stuck at 0, MULT-1 should produce 0 when given inputs
of 2 and 1). The tradeoff available thus asks whether we are willing to pre-specify
the faults and believe that the list is complete enough; if so fault models might offer
useful power.

Finally, we have so far been dealing with the single point of failure assumption.
Multiple points of failure are trivial to check using constraint suspension: To check for
a pair of failures, for instance, suspend the two corresponding constraints, then pro-
ceed as before. Generating multiple fault hypotheses efficiently, however, is somewhat
more difficult; no simple extension of constraint suspension offers much leverage on
this inherently exponential problem. This issuie will resurface when we explore GT)E
[deKleer87I, below.

6.3.2 Combining Generation and Test

Two systems Dart [Cenescreth84] and (DE IdeKleerS7] -- integrate hypothesis
generation and testing sufficiently that vhen viewed in terms of generate and test they
are best considered systems in which all of the testing knowledge has been integrated
into the hypothesis generator.
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6.3.2.1 DART
The DART system illustrates the use of predicate calculus as a mechanism for model-
based reasoning, with structure and behavior represented as axioms, The connection
of MULT-1 to ADD-i, for instance, would be represented as

CONN(OUT(i, MULT-1), IN(i, ADD-i))

indicating that the first (only) output of MULT-1 is connected to the first input of
ADD-1. Part of the behavior description of an adder would be

IF ADDER(a) AND VAL(IN(1, a), x) AND VAL(IN(2, a), y)
THEN VAL(OUT(i, a), x+y)

indicating that, if a is an adder with inputs x and y, its output will be x+y.
DART views diagnosis as a form of constrained theory formation. Starting with

a set of observations of device misbehavior, the goal is to produce a description of
its (faulty) structure. Given only the observations, the task would be the same as
designing a device that exhibited the observed behavior. The design description is
used to constrain the process by forcing the system to consider only propositions
from the design description or their negation. A diagnosis in DART is thus a deduced
proposition like

(OR (NOT (MULTIPLIER MULT-1)) (NOT (ADDER ADD-)))

indicating which component might be misbehaving.
To arrive at these deductions the system uses a technique called resolution residue,

a variation on resolution that works as a direct proof procedure (rather than a refuta-
tion method), guided by a number of strategies like unit preference for reducing the
number of useless deductions. Details of the process can be found in [Genesereth84];
at the knowledge level the deductions work much like the dependency tracing mech-
anism reviewed earlier, except in this case dependencies are deduced as needed (via
the behavior descriptions) rather than automatically recorded when doing simulation.
DART also uses the same resolution residue mechanism for test generation, providing
a certain economy of machinery.

Among the limitations in this approach are the occasional difficulties in expres-
sion logic can present. The single point of failure assumption in [Genesereth84], for
example, requires five distinct axioms for a five component devicc, each stating that
if one is broken the other four must be working. Further work in [GinsbergS6] has
demonstrated that reasoning from counterfactuals can produce a notion of minimal
faults, at some increase in the conplexity of I lie modeling and inference task.
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One of the advantages of logic as a representation and reasoning mechanism is the
potential for demonstrating the completeness of the inference procedure. While this
can be useful, it does not not imply that the resulting diagnostic process is complete.
There are at least two sources of difficulty. First, as noted in [deKleer87], completeness
of the inference procedure does not imply completeness of the prediction machinery.
As one example, behavior descriptions for analog devices can involve higher-order
differential equations; producing exact values for predictions in such devices means
solving solutions of such equations, yet no general purpose technique exists.

Second, all of the inference, i.e., all of the candidate generation, is done with
respect to the device model supplied, and completeness of the inference machinery is
quite distinct from the completeness of the model. Simple examples of the problem
arise when axioms are accidentally omitted- more subtle instances arise because, as
we argue below, the model is necessarily incomplete. Thus while it can be useful
to demonstrate completeness of the inference machinery with respect to the model,
completeness of the diagnostic process is a distinct issue. Indeed we argue below that
the bulk of the work and difficult problems are in the modeling.

ieO 6.3.2.2 GDE
The CDE system [deKleer87] provides a single mechanism for generating both sin-
gle and multiple fault hypotheses, and presents a carefully constructed strategy for
measurement selection. At this point we deal with a few of the ideas for hypothe-
sis generation, illustrating the basic notions with a few simple examples; we return
to the issue of measurement selection when discussing hypothesis discrimination in
Section 6.5.1. A detailed picture and additional examples of GDE can be found in
[deKleer87].

One important enabling technology for GDE is the use of an assumption-based
truth maintenance system (ATMS), i.e., one that propagates both values and assump-
tions. The reasoning begins much like that done previously, with some difference in
the record keeping. In Figure 12, for examlple, if we assume that MULT-1 is working,
we can use its behavior description to predict the vale at X, then record both the
value and the set of underlying assumptions (in parentheses). Values that have been
measured (in this case inputs and outputs) have no assumptions, indicated by the
null set.

A particularly interesting event occurs when there are two contradictory predic-
tions for the same point in the circuit, as in Figure 13. which shows the next step in
the reasoning. The value at X is also predicted to be 4, this time using the (measured)
valueat. F. the prediction at K" and the assumption that ADD-I is working. Note that.
assuinnptions accumulate: The prediction X=4 carries all tite assumptions it relies oln.

'l'his is i||teresting 1)(WtiLlIS, of the inl'Cence lhal can now be made: If all t h rv
assumptions so far were true., (i.e.. MtLT-i and MuIIT-2 and A)D-1 were all working),
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A=3 MULT-I X=6 (MULT-1)

B=3 0ADD-1 F=10 0

C=2 0 MULT-2 Y=6 (MULT-2)-D-
D=2 0 

ADD-2

E=3

Figure 12: Values and Records Produced by an Assumption-Based TMS.

there is an unavoidable contradiction - two different values at X. Taking the obvious
step, we turn that around, inferring that one of the three assumptions must be wrong
(i.e., one of the three components is not working correctly).

This is the process of constructing "conflicts": Whenever there are two different
predictions for the same place in the circuit, collect all (i.e., take the union) of the
assumptions underlying the conflicting predictions. The resulting conflict indicates
that at least one of the components in it must be malfunctioning.

Continuing the propagation process in Figure 13 eventually yields a second conflict
as well:

CI: (MULT-1 MULT-2 ADD-i)
C2: (MULT-1 MULT-3 ADD-2 ADD-i)

The second step in GDE is to generate a set of candidates that deals with all of
the conflicts. MULT-1, for example. is a candidate because it can account for both C1
(one of (MULT-1 MULT-2 ADD-i) must be broken), and C2 (one of (MULT-1 MULT-
3 ADD-2 ADD-i) is broken.) Since a single component, is capable of accounting for
all the conflicts, one of the hypotheses in this case happens to be a single point of
failure. ADD-1 is a similar hypothesis; single point of failure hypotheses are produced
by intersecting the conflicts.
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X=6 (MULT-1)

X=4 (MULT-2 ADD-i)
A=3 0

B=3 0DML- F=10

C=2 0 MULT-2 Y=6 (MULT-2)

D=2 0 ADD-2

Figure 13: One More Step in the Propagation.

Accounting for conflicts can be viewed more generally in mathematical terms
as set covering: We want a collection of components that covers all the conflicts.
Singleton covers like (MULT-1) produce single point of failure hypotheses, multiple
point of failure hypotheses are generated by larger set covers like (MULT-2 ADD-2),
which takes MULT-2 from the first conflict and ADD-2 from the second.

This process is fairly intuitive, but it can be expensive - computing set covers
is in the worst case exponential. One way to reduce the potential impact of this
complexity is to use the notion of minimality in both conflicts and hypotheses. The
basic intuition is the same in both cases: Any superset of a conflict is also a conflict;
any superset of a hypothesis is also. a hypothesis. GDE uses this to reduce the amount
of work it does by generating and maintaining only minimal conflicts (i.e., no subset of
one is also a conflict) and minimal hypotheses (i.e., no subset of one also covers all the
conflicts). By doing this, the system need never examine any non-minimal conflict or
hypothesis, saving a substantial amount of work. While the fundamental exponential
character of the problem has not changed, the effect has been reduced, enabling the
system to handle problems larger than might otherwise have been possible.

The candidate generation part of GDE thus offers an efficient and intuitive inecli-
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anism for generating both single and multiple fault hypotheses in a unified approach.
The system also offers a degree of mechanism (and hence domain) independence, be-
cause the diagnostic process in GDE is separated from the machinery used to predict
behavior (the ATMS).

6.4 HYPOTHESIS TESTING VIA CORROBORATIONS
It is useful to discuss briefly the notion of corroborations, the situation in which a
measured value matches (corroborates) the prediction at that point. Using corrobo-
rations to do hypothesis testing is potentially useful, but must be approached with
caution. The basic intuition is seductive: Having seen that any component involved
in a discrepancy is a suspect, there is unfortunately a great temptation to construct
an overly simplistic dual principle -- any component involved in a corroboration must
be innocent.

Figure 14 illustrates the difficulty in an example that has a discrepancy at F
but a corroboration at G, where the observed value matches the predicted value.
Straightforward topological tracing back from F yields the usual candidates (ADD-1,
MULT-1, MULT-2). We are now, however, tempted to say that since the measurement
at G matches the prediction, all components involved in that corroboration (i.e.,
MuLT-2 MULT-3, and ADD-2) can be exonerated.

The seductive part is that it works in this case and some others, leading at times
to unjustified optimism that it is valid in general. The difficulty is illustrated by
the simple counterexample in Figure 15, in which ADD-2 has been replaced by a
component that computes the maximum of its inputs. Once again there is a conflict
at F and a corroboration at G, yet this time the exoneration is incorrect: MULT-2
might in fact be broken, producing 4 as its output.

In general the problem is fault masking, the situation in which a device receives
incorrect inputs, yet produces the output that would have been expected with the
correct inputs, masking further effects of the fault. Consider MAX-1 for instance: If
it receives incorrect inputs of 6 and I, it still produces the expected output,. 6, that,
would have resulted from the correct inluts (6 and 6).

Fault masking can arise in several ways. Any component that can be insensitive
to one of its inputs (e.g., MAX-i) can mask a fault on that input even when work-
ing correctly. Multiple points of failure can produce the problem, when one broken
component outputs an incorrect. value, but a second broken component further down-
stream masks some of the effects by producing the expected value despite the incorrect,
input. Finally, even with a, single point of failure, the phenomenon of reconvergent
fanout can produce fault making.

In Figure 16, for exainple, conll)(p uet B otinutes the square of its input, com-
ponent C computes 16 - 5x, aud ,\])I)-i is an adder. Component A is supposed
to produce 3, which should ('entiialiv resilt ini ADD-1 prodiwing 10. If A instead
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A=3 MULT-I

F=12
B=3 - ADD-1

C=2 - MULT-2

G=12
D=2 ADD-2 [G=121

E=3 -- MULT-3

E=3

*Figure 14: The Standard Example with a Corroboration at G.

incorrectly produces 2, B, working correctly, will produce 4, while C also working
correctly produces 6. The final output at, the adder is then the expected 10, despite
the single fault present in the circuit. If the signal from A fans out to other places, its
error would be manifest elsewhere, yet if we naively trace back from the corroboration
at ADD-1 we would incorrectly exonerate A.

One important reason to be wary about corroborations is thus the number of and
subtlety of the phenomena that can cause fault masking and invalidate corroborations
as a heuristic.

A second reason is the asymmetry in the consequences of mistakes in hypothesis
generation and in hypothesis testing. If the hypothesis generator is overzealous, we
may have more hypotheses to test than are logically necessary, but the system will,
at worst, be less efficient than it should have been. Overzealous exoneration, on the
other hand, can cause the system to arrive at the wrong answer by ruling out a valid
candidate. As a result, it may be plausible if desired to be aggressive with respect to
hypothesis generation, but, it, general it is useful to he more cautious about hypothesis
I vsl.iI '.

-- - - ------------------- ~---- -~.---------- - -
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A=3 ML-

F=12
B=3 AD1[F=10]

C=2 ML-

P I G=6
D=2 A-

[G=61

E=3 p

Figure 15: Counterexample Showing that Corroboration is not Valid in General.

Bp

610

Figure 16: Reconvergent Fanout ('an Produce Fault Masking.

6.5 HYPOTHESIS DISCRIMI1NATION
Having examined generation and testing, we next c'onsider hypothesis discrimination.
where the fundamental p)robleml is how to (list iguish among the hypotheses, when, as
is almost inevitable, more than one survives test ing. Distinguishing among competing
hypotheses involves gathering njew itiforiwition about the behavior of the device.
either by (i) makinig additional observations (probing), or (ii) (hanging the inputs
and making observations in that new situation (testing). In both cases the goal is t~o
gain the most, informnation at I hie least. cost.



-4

6 THREE FUNDAMENTAL TASKS 31

6.5.1 Probing
In considering probing strategies we proceed as before in steps from the most eleinen-
tary approach to successively more sophisticated techniques. The simplest approach
is to use only structural information to generat, the set of all possible probe loca-
tions and pick any place that has not been measured previously. Refinements to this
include (i) using knowledge about component behavior (ii) using knowledge about
expected failure rates, and (iii) trying to find the measurement that will lead to the
shortest sequence of probes.

6.5.1.1 Using Structure and Behavior
Perhaps the most straightforward and widely used approach is the guided probe. The
fundamental idea is to start at the discrepancy and follow it upstream to a compo-
nent that has an incorrect output but whose inputs are correct. If the component
receives valid information but produces a bad result, it must be the culprit. Given
the discrepancy in Figure 17 at F, for instance, we probe A and Z next, since if these
are observed to have their predicted values, MAX-1 must be broken. If Z has any
value other than 5, we probe upstream at both B and Y to see if they are I and 4

I ' respectively, and so forth until we find the culprit.

B=1I-4 ADD-1 LJ Z=5[F3

D=2 -

E=2 -

Figure 17: Guided Probe Example.

6.5.1.2 More Sophisticated Use of Behavior
Note that it was not in fact necessary to probe al .4, since a discrepancy there alone
could not have produced the observed value 3 at F. The guided probe technique can be
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extended to use information about component behavior to reduce the probes needed;
[Breuer76], for example, shows how it can be applied to Boolean digital circuits. The
reasoning involved is similar to that described earlier for using behavioral information
to constrain hypothesis generation.

The guided probe approach is appealing in its simplicity and intuitive clarity. It is
also, however, a linear time search, which, with even a little cleverness, can be turned
into a much more efficient binary search. In the current example, for instance, simply
examining the topology of the device makes clear that Y is a more effective probe. If
the value there is bad, half the components are exonerated - all those downstream
from it. In general the "half split" probe point can be found by considering for each
probe point the value that would be predicted there given each suspect; the favored
probe is the one that splits the set of current suspects. Figure 18 shows that Y is the
best probe: Ywill be 2 if MULT-1 or MIN-1 are broken, and 4 if ADD-1 or MAX-1 are
broken; either outcome thus rules out half the suspects. Ideally, the process of cutting
the search space in half can be continued at each step, producing the traditional binary
search, with its potential increase in speed from linear in the number of suspects to be
discriminated, to logarithmic. The maximal advantage arises in cases like this with
a linear cascade of components, with somewhat less (but still useful) improvement in
other cases.

A=2 F=3MAX-1

B= -4 ADD-1 I - Z max-': 5

add-i: t-add-: 3C=8" min-l: 3
MIN-1 y max-l: 4 mult-l: 3

D=2
add-m: 4

D2-4MULT-1 X max-l: 4 min-l: 2

E=2 --4 add-: 4 mult-: 2

rain-l: 4

mult-1: 2

Figure IS: Half Split Strat,'gy Example.
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6.5.1.3 Using Failure Probabilities

The example above is particularly easy because oiie probe is clearly more informative
than the others. In more realistic cases several places may be equally informative. If,
for instance, we apply our methods so far to the example in Figure 19, X and Y turn
out to be equally informative.

MULT-1: 4' ! ADD-1: 6

A=3 ML- T2

F=12

B=3 ADD-1 [F=1O]

II Y IMULT-I: 6

C2 MULT-2 ADD-1: 6C=2 MULT-2

D=2 - G=6

M[0=6]

E=3 
MULT-3 

[

Figure 19: Two Equally Informative Probes.

In the event that MULT-1 and MULT-2 happen to be implemented using different
chips that have different reliability histories, it would mtake sense to "play the odds"
by probing at the place that has the greatest chance of having an incorrect value. If
MULT-2, for instance, has a much higher a priori likelihood of failure than MULT-1,
it would be more efficient in the long run to try probing at Y first.

While this example uses failure probabilities to help select among probe points
that are indistinguishable using value predictions. the two are independent sources
of information. We can in general combine information from predictions (aboitt how
discriminatinig a probe can be) with information from failure probabilitice (about
how likely that probe will encounter an incorrecl value), to yield a measure of how
nformative a particular probe is likely to be.



C, Gd - -. _ --__- .-.--- J ". . _ -.-. ..... .

34 6 TIHREE FUNDAMENTAL TASKS

6.5.1.4 Selecting Optimal Probes
We have thusfar used information about predictions and failure probabilities to look
only one measurement ahead. The analysis in the previous section, for instance,
considered what single measurement looked best. A more powerful strategy would
determine what sequence of measurements was likely to be the most effective, since, as
with any search problem, the best path is not always clear from a one-step lookahead.

One obvious approach is exhaustive lookahead: The current predictions indicate
the potential places to probe first, we can then make new predictions based on the
possible outcome of each of those probes, use that information to determine the set of
possible places to probe second, make new predictions based on those, etc., continuing
until the sequence of hypothesized measurements would identify a unique fault. This
is a classic decision tree analysis and as always the difficulty is the size of the search
space.

As with any search problem, the challenge is to find a way of estimating the
value of a path without having to explore it to the end. The GDE system takes an
information theoretic approach, using the notion of minimum entropy as the basis for
its evaluation function (see [deKleer87] for details). Part of the difficulty in applying
this idea lies in determining the probability that a particular measurement will have
a particular value when not every candidate predicts a value at that point. GDE
develops a careful approximation and uses it to select a measurement that is, under S
a reasonable set of assumptions, optimal in the sense that it minimizes the expected
total number of probes.

This approach is well-suited to GDE because the assumption-based TMIS that it
uses maintains a substantial body of context, information that includes the values
predicted at each point in the device. Itence little additional machinery is needed to
generate and keep track of the required information.

6.5.2 Testing

Testing is the second basic technique for li*J)othesis discrimination. Here the fun-
damental idea is to select a new set of ilpliuts to the device that will help reduce
the suspect set by providing additional information about the behavior of the device.
To remain valid, a suspect has to account, or both the original symptoms and the
behavior observed in response to the new inputs. As with probing, the difficult task
is selecting a set of inputs that is particularlv informative.

If the set of tests that can be, preseinted to the device is fixed in advance, the,
problem of selecting a-n infornmati'e test. is 'ssen;tially equivalent to probe selection.
For each test, each suspect (ideally) predicts a certain outcone. heiice t he best test.
is the one which splits the set. of suspects in half.

If, on the other hand, the set, of possibl tests is inknown or pragmatically infinie,

it is necessary to genieratc an approlriate test. A simple, sub-optimal technique will
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serve to illustrate the basic idea and difficulties: Design a test for each suspect in
turn, that is, find a set of inputs that will give two different outputs depending on
the condition of that one component. This will serve to determine whether the fault
is in the current suspect or among those remaining.

As an example, assume that AND-gate AND-1 in Figure 20 is suspected of mal-
functioning, in particular of taking in I's and sending out 0. We want a set of inputs
that will indicate whether that is really how the component is behaving.

0 1

B-- 12 OR1 1 0 0

0 1 FC-- - AND-2

113 
E

D' I4 OR-2

Figure 20: An Example of Test Generation.

To do that we need to get a 1 to both inputs to the gate, then ensure that its
output is routed out to where it can be measured. The intuition is straightforward:
Work backward from the inputs of AND-i, then forward from the output. We can get
a 1 on the upper input by ensuring that OR-1 outputs a 1; this in turn can be ensured
if the input to inverter 11 at A is 0. The value at B then does not matter. Similar
reasoning from the lower input of AND-1 yields 0 at C. Then in order to ensure that
the output of AND-1 can be measured accurately at the device output, we need a 1
at E, the lower input to AND-2. With that input vector it appears that the value
at F will determine unambiguously whether AND-I is malfunctioning in the manner
noted.

This style of reasoning is the essence of test generation as traditionally practiced.
While the approach is appealing in its intuitive clarity and simplicity, it has important
limitations. For our purposes, the most significant limitation is its insensitivity to
the presence of other suspects in the device and the resulting insufficient specificity.
What if, in the current example, 11 and 13 also happen to be suspects? The test
vector selected will generate a value at F that depends on the state of more than one
suspect: If the value is incorrect any of the three components may be to blale.

Stated in this fashion the difficulty imninedia, ely suggests one plausible remedy:
When routing signals through the device, whenever possible route the signal only
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through known good components (components that are not suspects). Using this
strategy the test generation process would select 12 and 14 to provide the inputs
to the OR gates, and end up producing a test that was completely specific, that is,
dependent on the condition of only one suspect, AND-1. Work in [Shirley83] describes
a system that reasons in this fashion and that produces tests that are as informative
and specific as possible.

A second substantial problem in testing arises in circuits with reconvergent fanout.
If, for example, the lower input of AND-2 had been attached to input D (rather than
having its own input E), the value at D would have entered into two different goals:
Establishing the lower input to AND-1 and routing the output through AND-2. It
is thus a problem of planning in the face of interacting conjunctive subgoals, often
resulting in backtracking and potentially involving a considerable amount of search,
since test generation is in the worst case NP-complete.

6.5.3 Cost Considerations
Underlying the preceding analysis are a number of assumptions about the relative
costs of probing, test application, and computation, where the "cost" of an action is
typically taken to mean the amount of time it takes to perform.

Analysis aimed at selection of optimal probes is useful only when computation is
reasonably cheap compared to the probes thenselves. There would, for example, be
little point in waiting for a ten-minute computation to determine the optimal probe
if all of the measurements are easily made in five minutes. In general the assumption
holds true, partly because computation keeps getting cheaper and gets cheaper faster
than almost anything else. Probing, by contrast, typically means some sort of physical
action (hence is it likely to be slower), and some of those actions may result in losing
information (e.g., having to move boards to get access to probe points). Hence the
assumption is typically valid, but it is important to be explicit about it.

Similarly, generation of distinguishing tests is useful only when the required com-
putation is cheaper than probing or whe, prol)ing is impossible. As above, there is
little point in waiting for a computation to construct an informative test if many mea-
surements that would eliminate suspects could be made in the meantime. Although
an adequate working assumption, it. is violated occasionally because test generation
can be expensive (NP-complete for combinational digital circuits).

Finally, an assuimption underlying the preceding discussion is that probes are in-
dependent of one another and all have equal cost. This assumption is violated if there
are a range of technologies for probing the dcvice, each wit It its own cost. resolution.
and number of resulting observations. A digital logic analyzer, for example, yields
detailed observations of several signals ,imniltanvotsly, but requires much more setup
time than a simple voltmeter. lence the volItmeter mnay be preferal)le to the logic
analyzer even if it yields less in futmnu io a bout the currently outstanding suspects.
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Similarly, tests may have different setup costs - in fact they may have different setup
costs depending upon the order in which they are applied - with analogous conse-
quences. The potentially relevant literature on decision theory is too large to survey
here, nevertheless it is important to be aware that subtleties of this kind are likely to
arise in real applications.

7 INTERIM CONCLUSIONS
We have discussed a substantial collection of ideas and techniques that form the
current basis for model-based diagnosis and troubleshooting. A brief review of the
highlights will help set the stage for exploring the open research issues.

e Model-based troubleshooting is based on the comparison of observation and
prediction.

Observation indicates what the device is actually doing, prediction describes the
intended behavior. Discrepancies between the two provide the starting point for
diagnosis. An important part of the diagnostic ability of model-based reasoning is
provided by behavior descriptions that capture both the causal behavior of the device
(predicting outputs from inputs) and inferences that can be made about its behavior
(determining inputs from outputs).

One of the important consequences of the model-based view is the ability to view
misbehavior as anything other than what the device is supposed to do. We need not
pre-enumerate the kinds of things that might go wrong.

e Model-based troubleshooting is device independent.

Given a new device description, work can begin immediately on troubleshooting
the new device. Unlike rule-based approaches, there is no time-consuming accu-
mulation of experience. These systems reason instead from engineering principles
applicable to a wide variety of devices.

* Model-based troubleshooting is symptom directed.

It reasons from the observed misbehavior toward the underlying fault. This is
particularly important for any device complex enough that the set of correct behaviors
is too large to explore exhaustively. In that case it is infeasible to run the device
through all its correct behaviors to see which one is not working; we work instead
from the information supplied by the symptom. The technique is also familiar, in the
sense that it captures some of the intuitions and reasoning that experienced people
typically use.
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Model-based diagnosis can be understood as a process of hypothesis generation,
testing and discrimination. Hypothesis generation works from a single symptom to
determine which components might have caused that symptom. The key issue is
providing a generator that is both complete and informed. We reviewed three different,
ways to do that, moving from the simplest version to more sophisticated approaches.

Where hypothesis generation works from a single symptom, the goal in hypothesis
testing is to determine which candidates can account for all the observations avail-
able about the behavior of the device. We examined four approaches, ranging from
straightforward fault simulation, to constraint suspension, DART's use of resolution
residue, and the GDE approach.

In hypothesis discrimination the fundamental issue is finding inexpensive ways to
gather additional information that will distinguish among the surviving hypotheses.
In exploring probing strategies we looked at four ideas that used successively more
information, beginning with structure. adding information about behavior, a priori
failure probabilities, and finally ending with a means of estimating which probe will
likely yield the shortest sequence of measurements. A brief review of test generation
demonstrated that the traditional technique is indiscriminate in its selection of com-
ponents to use in constructing a test; considerable advantage can therefore be gained
by the simple expedient of using only known good components.

Two important elements of the analysis in this paper are the view of the basic task
as a three step process of generate, test. and discriminate, and the exploration of the
character and amount of knowledge that can be brought to bear at each step. Dividing
the task into those three steps provides an important form of inental hygiene, making
it possible to understand each of these fundamentally different problems on its own
terms, without being misled by the common implementation practice of intermingling
them for efficiency. Exploring the kinds of knowledge used at each stage offers a sound
basis for comparing different variations and understanding how and why one may be
more powerful than another.

The combination of these two elements also maps out a sizable space of program
architectures. This is valuable because it provides a way of unifying what might
otherwise appear to be a diverse collection of systems. We claim ill fact that the
model-based systems built to date fit comfortably somewhere in that space, i.e.. all
the current systems can be characterized in this fraimevork according to the amount
and kind of knowledge they use at eacli stage.

One overall conseq uIence exild('i t at this stage Is that model-Iased diagnosis is a
fairly well-understood process. Parl of the evidenice for this is the character of the
different, programs that have been 1,,iilt: The xaiat ions in the way they work are
minor in comparison with the conmo.i core of tech niques i use. Additional evidence

comes from recent success at recas iing nmch oh tihe reasoning iin terms of formal logic.
The work in [Reiter87] and [GinslberpS6]., fo' instance, provides forrmal definitions of
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and proofs for some of the ideas presented in more intuitive form here.
All this has two interesting consequences. First, the technology is ready for appli-

cation. A body of understanding is in place that is sufficient to attack modest-sized
but real problems. Building these applications will no doubt raise additional inter-
esting questions, but there is a sufficient base of knowledge a\ ,ilable for us to begin
to use it.

Second, the technology is well enough understood that the interesting research
agenda now consists of either developing substantial advances beyond the techniques
outlined earlier or finding fundamentally different ways to proceed. Interesting appli-
cations may result from constructing, tracing, and reasoning about dependencies, but
research contributions arise by exploring problems for which the existing techniques
are inadequate and finding ways to make substantial advances in them.

We consider next a number of problems that may help spur such results.

8 THE RESEARCH ISSUES
Three categories of research issues seem particularly important and promising at this
point in the evolution of the art: Device independence and domain independence,

* 0 scaling up to more complex behaviors, and selecting the "right" model. The first
addresses the question of how broadly we can use the current set of ideas. The case
for device independence is easily made, since nothing done so far is specific to the
particular device(s) examined, but are the ideas more broadly applicable? What
happens if they are applied to devices built with entirely different technologies?

Numerous questions arise in considering scaling up to more complex behaviors. At
the most basic level, the question is how to represent and reason about the behavior
of more complicated devices, in particular those that have memory and thus can
present interesting dynamic behavior. A related question is the power of our predictive
engines: flow can we improve their performance so that predictions can still be made
when dealing with complex devices or complex interaction topologies?

Finally, the question of selecting among models confronts a number of very difficult
problems. As will become clear, the difficulties start with acknowledging the appar-
ently simple observation that model-based reasoning is only as good as the models
we provide to it. That will lead to an interesting and difficult challenge - the battle
between complexity and completeness, where the desire to be complete in diagno-
sis seems directly contradicted by the impossibility of dealing with an unconstrained
problem.

8.1 DEVICE INDEPENDENCE AND DOMAIN INDEPENDENCE
It appears easy to argue that the technology reviewed so far has a strong degree
of device independence - given a niew description of a different circuit, the same
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reasoning process can begin immediately. It is not so obvious, by contrast, what
degree of domain independence these techniques exhibit. While there has been a small
amount of work done in other domains (e.g., neurophysiology, hydraulic systems), the
vast majority has been aimed at relatively simple electronic circuits.

At this point an intriguing experiment would be to go out on the edge and apply
this in a domain where it is not at all obvious that it will work. It would, for instance,
be fun to try thinking about clock repair in this fashion. Not the modern digital kind,
though; the interesting challenge would be the old-fashioned gear, wire, and spring-
driven models. What would it take to describe the behavior and structure of such a
device? Can the techniques reviewed above be used to reason about it? The intent
here is to work on a problem that strains the state of the art, to teach us more about
representing and reasoning about structure and behavior.

8.2 SCALING
In considering whether and how this technology can scale up to larger devices, it is
important to recognize that there are at least two independent dimensions - size
and complexity - and that size alone is not a particularly difficult issue. If the basic
components are simple, it is possible to work with thousands of them without straining
the current technology. One current program, for instance, models and diagnoses a
system with a few thousand components [FirstS2]. Each of them is very simple, but
nothing new is required to apply the existing ideas to this system of thousands of
parts. The model entry task may be sizable, but it is an engineering challenge, not a
fundamental advance in representation or reasoning.

More interesting challenges arise when we start to deal with devices with complex
behavior. As one commonsense example, consider the behavior of a VCR that can
be programmed to record two different broadcasts at different times in the future.
Even this relatively modest-sized finite state machine can present apparently daunting
problems of representing and reasoning about behavior.

As a somewhat more immediately useful example, consider the task of describing
the behavior of an ALU (arithmetic/logical unit), using the behavior representation
technology available today. If that seems tractable, imagine describing the behavior
of a common microprocessor like the 80386. flow might we describe what that device
can do in a way that makes possible exaumining and reasoning about it'? As long as
we're at it, imagine describing the behavior of something genuinely complex, like a
disk controller.

Nor is complexity solely the province of large-scale devices. Work at the other
end of the scale has demoimstrated how complex t he )ehavior of a single transistor
can be when coarse abstractions like "switch" or "amplifier" prove to be insufficiently
detailed [Dague87]. Many of the sa in, issues arise here as well.

What might be done'? One appiach is to look for a new vocabulary, a new set
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of abstractions designed to deal with the kinds of complexity encountered. Imagine
examining the data sheet for the 80386, making careful note of the vocabulary in
use. That data sheet is a form of existence proof: With some degree of success it
communicates what this device is supposed to do. The easy speculation is that its
success arises in large part because it uses the "right" set of abstractions. The more
difficult part is understanding what "right" means -- what makes these abstractions
effective? What is it that they ignore, what do they emphasize, and why are those
effective selections?

Complex behavior also forces the question of the adequacy of our predictive en-
gines. As noted earlier, the simpler local constraint propagators stall when encoun-
tering the need to deal with more than one equation in one unknown. Although
some effort has been directed toward propagating symbolic expressions, the resulting
algebra can be quite complex. One possible approach to the problem would be to
guide the algebraic manipulations with some knowledge of the device structure and
behavior, similar in spirit to the observation that a physicist guides his mathematics
by an understanding of the problem and what he is trying to establish. The question
is not how to be good at symbolic manipulation of complex expressions, so much as
it is knowing what symbolic manipulation to do to avoid the complexity in the first
place.

A third set of challenges arises in dealing with devices with memory. If, as is
frequently the case with such devices, we know only the inputs supplied to it ini-
tially and the final output that results some time later, hypothesis generation and
testing becomes truly indiscriminate. Work reported in [Hamscher84], for instance,
examined the task of diagnosing a sequential multiplier (a device that multiplies one
digit at a time, shifting and adding in much the same way the problem is done by
hand). If the multiplier's behavior is modeled using the technology reviewed above,
candidate generation becomes indiscriminate - almost every component can account
for the misbehavior. This is not a minor consequence of current implementations; the
difficulty arises from the basic nature of the problem: If all we know is the input at
the beginning and the output at the end, the problem is genuinely underconstrained
in much the same way that two equations are insufficient to determine the value of
three unknowns.

This is a second place in which new abstractions may prove to be the relevant.
tool, particularly temporal abstractions. Some early work in this direction has been
done and seems promising: [Hlamscher88], for instance, demonstrates how temporal
abstractions can be effective for such devices.

One other approach that may prove effective in reasoning about complex devices
is the notion of "second principles of misbehavior." One example is the heuristic
that, ill a coluiplicated device fault manif(.tations vill he obvious. To illustrate,
iniLgine working with a. device that iicluIdes a current generation microprocessor, one
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that happens to be broken in some fashion, and consider the consequences of that
fault on the microprocessor's behavior. It is possible, but highly unlikely that the
consequences will be subtle: It is unlikely for instance that the device will exhibit only
a very small perturbation in its expected behavior for only one of the instructions in
its instruction set. It is much more likely that the fault will result in some obviously
aberrant behavior every time the device is used. One common form of that aberration
is for the device to stop producing any behavior at all, e.g., by hitting an illegal
instruction and halting.

This is one example of the second principle that complicated devices don't break
in subtle ways. It is a "principle" in the sense that it can be explained by (and
perhaps eventually derived from) arguments about design. In this case, for instance,
the argument is that complex designs often involve re-use of modules, both to simplify
the design and reduce cost. Re-use of modules in turn means that any error in such a
module will tend to have widespread consequences. In a microprocessor, for instance,
a single ALU may be used both for the arithmetic required for an ADD instruction
and the arithmetic needed to compute the next instruction address. Any error in
that ALU will not only yield incorrect sums (which might be overlooked), it will also
introduce instruction sequencing errors that are unlikely to be missed.

Since these principles can be grounded in knowledge about design, they are more
than device-specific heuristics and are likely to have widespread applicability. They
are also an important addition to the ideas explored thusfar, because we are as a
field a long way from being able to do such reasoning from a purely first principles
approach. Second principles of misbehavior thus offer a way of summarizing what
would otherwise be a long and difficult derivation.

One challenge we face is finding more of them; one obvious place to start is with
experienced troubleshooters. Whenever a model-based system produces a diagnosis
that is logical but strikes a human troubleshooter as inappropriate, there is the stan-
dard opportunity to find out what it is that the experienced troubleshooter knows
that is still missing from the system. Some of that knowledge may point toward
additional second principles of useful breadth and utility.

8.3 MODELING IS THE HARD PART
The third and possibly most intriguing area of research is brought into focus by
acknowledging that all model-based reasoning is only as good as the model. This ob-
servation is in some ways obvious and in some ways fairly subtle, but the consequences
are interesting and present difficult problems.

To illustrate one version of t he problem, note that all of the reasoning techniques
reviewed earlier generate predictions by propagat ing along the pathways shown in the
device description, then traced back from the discrepancies along those same pathways
to find suspects. The crucial point is twofold: Suspects are found by tracing causal
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pathways back from a symptom, and all of the reasoning above accepted the device
description as given, implicitly assuming that the pathways supplied accurately model
causality in the device. Yet this can easily be false.

One commonplace example of this phenomenon is a bridging fault, the event that
results when a chip is being soldered in place and enough solder accumulates at two
adjacent pins to bridge the gap between them (Figure 21). The result is a connection

a causal pathway - where none was intended.

Figure 21: A Solder Bridge.

The possibility of faults of this sort has a particularly interesting consequence.
Since candidates are found by tracing back along causal pathways, if the pathways
indicated by the device description are different from those in the actual device, the
tracing process will lead to the wrong components. Put somewhat more simply. the
great virtue of the model-based approach is its ability to reason from the description
of structure and behavior, yet the fatal flaw in the model-based approach is that it
reasons from the description of structure and behavior, and that description might
not capture the actual causality in the device.

8.3.1 The Model Must Be Wrong
How is it that the model might not be an accurate description of the causality in
the device? One possibility is that the device isn't supposed to be that way. The
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bridge fault is one example of this, another is an error during assembly -- the device
is simply wired up incorrectly.

A second possibility is unexpected pathways of interaction. In an electronic circuit,
a wire is the expected pathway of interaction; that's how components are supposed
to affect one another. But there can be other, unexpected, pathways as well: One
component may heat up another, two wires carrying high frequency signals may be so
close that they affect one another via electromagnetic radiation, etc. The important
point is that the design description, by intent, only tells us about the pathways of
interaction that are supposed to occur. In the device itself other unknown pathways
may be operating. The consequences of this are particularly evident in DART's
explicit statement that its diagnosis is restricted only to ".. . propositions from the
design description or their negation." Hence the only kinds of diagnoses it can even
consider are those stating that some component explicitly mentioned in the design
description is malfunctioning.

Third, the model may not match the device because in our routine practice we
explicitly decide not to represent a particular level of detail. In a large circuit, for
instance, we may choose not to model every individual wire, settling instead for a
slightly more coarse-grained model in which components are modeled as connected
directly to one another.

But most importantly, it is in principle necessarily true that the model be different
from the device. It is the fundamental nature of all models, all representations, that
is at issue here: There is no such thing as an assumption-free representation. Every
model, every representation contains simplifying assumptions. That's what models
arc, so in some ways this is perfectly obvious.

The perhaps less obvious part is the unavoidable impact this has on model-based
reasoning. As noted, the fundamental idea behind the technique is the idea that, if
the model is correct, then all the discrepancies between observation and prediction
arise from, and can be traced back along causal pathways to, defects in the device.
But the model is, inevitably and in principle, never correct.

To be more precise, the model is never comipletely correct. When it is a good
enough approximation, the techniques described earlier are siiccessful. Bt the ill-
evitability of incorrectness in theory and thc pragmatic reality of it iii practice Iinan
that this issue is real and crucial to the robustness of the systems we build. \Ve need
to understand both what effect it has on the systems we build and how to deal with
it.

8.3.2 Consequence: Complexity vs. Completeness
One of the most important effects of the plienomenon is an i tievitable tension between
complexity and completeness. Fo be (:omplete. diagnostic reasoning would have to
consider all the things that may pos, ihl.y go wrong, along every possibift Pathway of

sham
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interaction. But such reasoning would be indiscriminate. implicating every compo-
nent - there would always be some (perhaps convoluted) pathway by which that
component might have caused the problem. Yet if we make any simplifying assump-
tions, i.e., omit any pathway, there will be entire classes of faults that the system will
never be able to diagnose.

There is a fundamental problem here. If we make any simplifying assumptions we
run the risk of being incomplete, because the simplifying assumption might be the
one that encompasses the actual fault. Yet without some simplifying assumptions the
reasoning drowns in complexity.

While this arises in a particularly immediate fashion here, it appears to be a
fundamental issue for problem solving in general. Any time we set out to solve a
problem, we need to make simplifying assumptions about the world in order to get
started, yet sometimes those assumptions are wrong. Thus any techniques that can
help us to select, organize and manage the assumptions that will be of potentially
broad utility.

8.3.3 Consequence: Model Selection Is Fundamental
Perhaps the most interesting implication of this line of argument is the significance of
the problem of model selection. Since there are no assumption-free representations,
one strategy would be to assemble a collection of them, each embodying a different
set of assumptions, along wit h a body of knowledge about how to select carefully from
among them. No one of them or any simple combination of them provides a complete
representation, but progress might be made by selecting carefully from among them,
attempting to make enough assumptions to keep the problem tractable, yet making
a few as possible to reduce the chance of not being able to see the actual problem.

It is likely as well that the choice will not only have to be judicious, but repeated
and dynamic as well, changing views on the fly as understanding of the problem
evolves. One support for this approach is the observation that experienced engineers
do something like this. We need to understand what it is they know and how they
reason about model selection.

The problem seems to lie at the heart of eligineering problem solving: Perhaps the
inost basic, most important decision made in starting to solve a problem is deciding
"how to think about it." What is it that suggests modeling something as an analog
device, a digital device, or a hydraulic device? How do we know what's relevant?
flow does the process begin? The problem seems difficult but particularly intriguing.

Three speculations suggest possible approaches to the problem. First, we might
review the difficulties mentioned above that are encountered when using models,
and reformulate them as heuristics for model design [llamscher88]. The difficulty
preseuited by reconvergvnil, fanotit (i.e., causing local propagation to stall) can, for
illsta ice, Ib, red iced to soily' degree by selectiig module boundaries to (1ncalpsula.te
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the fanout. Similarly, judicious selection of module boundaries can help reduce hidden
state, the problem that makes diagnosis underconstrained in the case of the sequential
multiplier. A set of such heuristics would assist in the design of models that reduce
or avoid some of the problems encountered above.

A second speculation explores the problem of deciding how to model something by
suggesting that different pathways of interaction define different kinds of models, dif-
ferent representations, which can then he layered to provide a sequence of successively
more complex views [Davis84]. A wire, for instance, is one pathway of interaction,
it defines the traditional schematic. If heat is the relevant pathway, that defines a
different representation of the device, one in which "distance" is defined in terms of
how easily one device heats another. Electromagnetic radiation is a third pathway
that defines yet another kind of model and another distance metric.

These multiple different kinds of models are then organized from simplest to more
complex (defining "simplicity" is itself an open issue), so that the system starts by
using the simplest and falls back on more complex models only as necessary. The
technique has been used to diagnose a bridging fault successfully, demonstrating that
multiple models using different representations and different definitions of distance
can be used to reduce complexity without permanently losing completeness [Davis84].

A third speculation begins with the observation that every model is defined by
a set of simplifying assumptions. We might collect the set of all the simplifying
assumptions routinely made and consider the space of models that are generated by
it. For example, Figure 22 shows three different models of a NAND gate, beginning
with the traditional transistor level model at the bottom.

Assuming that power can be ignored, then abstracting away from the specific sub-
components to the roles they play, produces the intermediate level representation in
the middle. Two further simplifying assumptions - that current can be ignored and
that all the subcomponents can be encompassed by a single box, yield the traditional
representation at the top. Hence these two pairs of assumptions yield two successively
simpler models of the device.

But these are not the only models those assumptions can generate. The simple
trick of changing the order in which the assumptions are made produces an entire
lattice of different models (Figure 23).

Some of them are admittedly rather obscure, but there are in fact (perhaps ob-
scure) circumstances under which every one of them will be the "right*' way to think
about the device. One reason why some faults are so difficult to diagnose may be
precisely because the "right" model in that case is a particularly unusual set of as-
sumptions. Even faults as com monplace as bridges illustrate the issue: Part of the
reason they are especially difficult to diagnose is that. they require examining a less
familiar representation - - the physical layout of the chips. While the fault is "simple"
in that representation (two adjacent pins). it can appear on the functional diagram
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Figure 22: A Simple Hierarchy of Models.

as a connection between two widely separated points.
This is, of course, still speculation. Given that the lattice in Figure 23 was gen-

erated simply by changing the order of the assumptions, there's no particularly com-
pelling reason to believe that it will work well. Nor have we answered the second half
of the question: How to select from among the models, and how to know which to
choose next when one of them begins to fail. This is only a beginning, but it may be
worth further consideration.
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9 SUMMARY
We began this survey by viewing model-based diagnostic reasoning as the interaction
of prediction and observation, and saw that one useful consequence was the chance to
view misbehavior as anything other than what the device is supposed to do. Model-
based reasoning thus covers a broader collection of faults than traditional approaches
to diagnosis. A second virtue of the technique is its device independence, enabling us
to begin reasoning about a system as soon as its structure and behavior description
is available.

In examining how to represent structure, we noted the utility of descriptions
that were hierarchic, object-centered, and topologically identical to the device be-
ing modeled. In examining behavior we noted the widespread use of constraint-like
descriptions that allow both simulating the actual behavior of the device and making
inferences about what the values at inputs must have been.

We explored diagnostic reasoning by viewing it in the three phases of hypothesis
generation, test, and discrimination. This view allowed exploration of each of these
fundamentally different problems on its own terms, made clear the common core
of techniques that are in use, and offered evidence for the claim that model-based
systems to date fit into the space of architectures characterized by the amount and
kind of knowledge they use at each stage. The view also supports the claim that the
process is reasonably well understood: Building a dependency-tracing model-based
reasoner is now a fairly routine process.

Finally, we examined three majoi open research issues. We explored the question
of domain independence, leading to the suggestion of trying these techniques on de-
vices from widely different domains, to extend our ability to describe structure and
behavior. We examined the difficulties in scaling up to devices with considerably
more complex behavior, speculated about the possibility of finding a new vocabllary
of effective abstractions., and touched on the difficulty of producing predictions in the
face of complex behavior. And we emphasized the fundaimental role and fundamental
difficulty of model selection as the central problem in both extending the reach of
these programs and ensuring their robustness.
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